
Power Data for HPC:
What is it?

How is it obtained?
What use is it?

Sean Wallace
Illinois Institute of Technology

HPC Power Management 2016
1seanjwallace.com

http://seanjwallace.com

What is it?

2

Who’s asking?
• To the pragmatist (scientist?):

• Voltage and current at a particular time

• To the lab director:

• That thing I would like to use less of

• To the application developer/end user:

• What do I care!? Just make my application run faster!

3

4

What is it?
Not the same to everyone!

One size fits all?

Granularity makes a big difference!

6

What is it?
Not the same to everyone!

Not one size fits all!

Two different applications?

Application makes a big difference!
DGEMM XSBench

8

What is it?
Not the same to everyone!

Not one size fits all!
Not the same for all applications!

.

.

.

It’s just data, interpretation makes it meaningful.

How is it obtained?

What is obtainable?

IBM Blue Gene/Q

BG/Q - Environmental Database
• Blue Gene systems have environmental monitoring capabilities that

periodically sample and gather environmental data from various sensors.

• This information along with timestamp and location is stored in IBM DB2
relational database—commonly referred to as the environmental database.

• Sensors are found in service cards, node boards, compute nodes, link
chips, bulk power modules (BPMs), and the coolant environment.

• Depending on sensor, can be temperature, coolant flow and pressure, fan
speed, voltage, and current.

• Collected at relatively long polling intervals (about 4 minutes on average).

BG/Q - EMON
• In addition to environmental database, IBM also provides interfaces

in form of environmental monitoring API called EMON.

• Allows access to power consumption data from code running on
compute nodes at much faster rate than environmental database.

• Data from EMON is total power from the oldest generation of power
data.

• Collection is done at the node card (32 compute nodes) level for
each of 7 “domains”.

Intel RAPL
• As of the Sandy Bridge architecture, Intel has provided the “Running Average Power

Limit” (RAPL) interface.

• Originally designed to provide a way to keep processors inside of a given power limit over a
sliding window of time, but can also be used to calculate power consumption over time.

• Circuitry of chip is capable of providing estimated energy consumption based on hardware
counters.

• Intel model-specific registers (MSRs) are implemented within x86 instruction sets to allow for
access and modification of parameters.

Domain Descrip,on

Package	(PKG) Whole	CPU	package.

Power	Plane	0	(PP0) Processor	cores.

Power	Plane	1	(PP1)
The	power	plane	of	a	specific	device	in	the	encore	(such	as	an	integrated	GPU-not	useful	in	server	
plaCorms).

DRAM Sum	of	socket’s	DIMM	power(s).

Intel RAPL
• Access to MSRs requires elevated access to the hardware, typically something only the kernel can do.

• As a result, a kernel driver is necessary to access these registers in this way.

• As of Linux 3.14 these kernel drivers have been included and are accessible via the perf_event
(perf) interface.

• Short of having a supported kernel, only way to access is to use Linux MSR driver which exports MSR
access to userspace.

• Once built and loaded, it creases a character device for each logical processor under /dev/cpu/*/msr.

• Number of limitations:

• Collected metrics are for whole socket. Therefore, not possible to collected data for individual cores.

• DRAM memory measurements do not distinguish between channels.

Intel RAPL

Time (Seconds)
706050403020100

Po
w

er
 (W

at
ts

)

60

50

40

30

20

10

0

NVIDIA Management Library
• A C-based API which allows for the monitoring and configuration of

NVIDIA GPUs.

• Only supported on Kepler and newer architecture (e.g., K20, K40, K80,
etc.).

• Only one call for power data collection: nvmlDeviceGetPowerUsage().

• Reported accuracy by NVIDIA is ±5W with an update time of about 60ms.

• Power consumption is for entire board including memory.

NVIDIA Management Library

Time Since Start
12.510.07.55.02.5.0

Po
w

er
 (W

at
ts

)

56.00

54.00

52.00

50.00

48.00

46.00

44.00

Time (Seconds)
100806040200

Po
w

er
 (W

at
ts

)

150

125

100

75

50

Tem
perature (D

egrees C)

65

60

55

50

45

40

NOOP	Workload Vector	Add	Workload

Intel Xeon Phi
• Two ways to collect data on host side:

• In-band - uses symmetric communication interface (SCIF). Enables communication between host and device
as well as device to device. Primary goal to provide uniform API for all communication across PCI Express
buses. All drivers expose same interface on host and Xeon Phi, allows for software to execute where most
appropriate.

• Out-of-band - starts with same capabilities in coprocessor, but then sends information to Xeon Phi’s System
Management Controller (SMC). Then responds to queries from platform’s Baseboard Management Controller
(BMC) using intelligent platform management bus (IPMB) protocol.

• MICRAS daemon is a tool which runs on both the host and device platforms.

• On host, allows for the configuration of the device, logging of errors, and other common administrative utilities.

• On device, this daemon exposes access to environmental data through pseudo-files mounted on a virtual file
system.

• To read data, just read the file and parse data.

Intel Xeon Phi

IOCTLs

Host SCIF Driver

Sysfs

Coprocessor SCIF Driver

Host Coprocessor

IOCTLs

PCIe Bus

MIC Access SDK

Control Panel

System Management Agent

User SCIF

ODM Tools

User SCIF

SysMgmt SCIF Interface

Monitoring
Thread

Host RAS Agent

MCA
HandlerApplication

Application

“in-band” (1)
“out-of-band” (2)
MICRAS (3)

(1)
(2)

(3)

(1,2)

Intel Xeon Phi

API/Daemon
DaemonAPI

To
ta

l P
ow

er
 C

on
su

m
pt

io
n

119

117

115

113

111

There’s got to be a better way!

The case for a universal API
• Each platform/system has its own method of access, data

obtainable, accuracy, latency, etc.

• Developers (unless they care about power data) aren’t going to
spend the time to implement the calls to the necessary APIs to
gather this data.

• What if there was one tool that could capture any/all data with
minimal impact to application runtime and with minimal code
impact?

MonEQ
• Wanting to address limitations in other tools as well as in data collection

mechanisms, we designed and developed MonEQ.

• In default mode, MonEQ pulls data from selected environmental
collection interface at quickest polling interval possible for the given
hardware.

• Registers to receive SIGALRM signal at polling interval. When
delivered, MonEQ calls down to the appropriate interface and records
data.

• Supports more complex features like tagging specific areas of code.

MonEQ
int status, myrank, numtasks;

status = MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

/* Setup Power */
status = MonEQ_Initialize();

/* User code */

/* Finalize Power */
status = MonEQ_Finalize();

MPI_Finalize();

32	Nodes 512	Nodes 1024	Nodes

Applica,on	
Run,me 202.78 202.73 202.74

Ini,aliza,on 0.0027 0.0032 0.0033

Finalize 0.1510 0.1550 0.3347

Collec,on 0.3871 0.3871 0.3871

Total 0.5409 0.5455 0.7251

What use it it?

Workload Power Analysis

Jobs

Users

Waiting Queue

J4 J3 J2
J1

Jobs are moved to the window to
preserve fairness (user-centric).

J0

Scheduling Window

J3 J2 J1
J0

Power Aware
Scheduler

Jobs are selected for execution to
optimize system utilization

(system-centric) under the power
cap constraint.

Dynamic Learner

Profiling Tool

Waiting queue is sorted by an ordering
policy (e.g., FCFS or WFP).

Jobs

Users

Waiting Queue

J4 J3 J2
J1 J0

One-by-one allocation of jobs from the head of waiting queue

Traditional Approach

Our Approach

Environmental Data
Waiting queue is sorted by an ordering

policy (e.g., WFP or FCFS)

Data used by
dynamic learner can
come from multiple

sources

HPC System

Runtime job power

estimation

Dynamic Learner
• Takes power data from power monitoring facility (e.g., MonEQ) to

estimate job power profiles.

• At each scheduling instance, learner has two tasks:

• Estimate power profiles of the jobs in the queue.

• Calculate the available power budget for incoming jobs by
estimating power requirements of running jobs.

Power Aware Scheduler
• Selects jobs in the waiting queue for execution to meet scheduling

goal under power constraint.

• Uses proposed window-based optimization method.

• In contrast to conventional approach, our design examines a
window of jobs in the queue which helps maintain fairness.

• 0-1 knapsack problem is formulated to describe power monitoring
problem.

Learning Accuracy

94% accuracy after just 26 days of execution.

Conclusions
• Power is a funny thing:

• It means different things to different people, it’s not always directly
comparable, getting it might mean jumping through hoops, etc.,
etc.

• But, when used carefully enough, it can be more than just insightful;
it can be actionable!

• In the very near future power won’t just be an interesting research
subject, it will define the very limits of HPC.

Wish List

• Better documentation!

• Continued development of first-class tools.

• Feedback from end-users…what do you want?

