
synergy.cs.vt.edu	

Is Green Exascale Computing
 … an Oxymoron?

(a.k.a. “The Case of the Missing Supercomputer Energy”)

Wu FENG
Green500
Virginia Tech
•  SEEC Center
•  Dept. of Computer Science
•  Dept. of Electrical & Computer Engineering
•  Health Sciences
•  Virginia Bioinformatics Institute

Images courtesy of Los Alamos National Laboratory and Virginia Tech
© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Performance Milestones of HPC Systems

•  Performance crosses a threshold of 103k
operations per second, for some k.
–  1997 : Terascale (1012) à Intel ASCI Red
–  2008 : Petascale (1015) à IBM Roadrunner
–  2015 : Exascale prediction (1018) à ???

•  Power?
20 MW (“impossible”) à 67 MW (“possible”)

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Al Geist, Present & Future Leadership Computers at OLCF, DOE Data/Viz PI Mtg, Jan 2015

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Why Does Green Exascale Appear Feasible Now?

1.  Timeline Changed!
2015 à 2022 … as much as seven years of additional runway.

2.  Funding Investment by DOE Office of Science
•  FastForward
•  Design Forward and Design Forward 2
with a focus on power and energy efficiency, i.e., greenness

We are now metering, monitoring, and measurement the
greenness of systems from subsystems to nodes to entire
supercomputing systems. (THIS WORKSHOP!)

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Al Geist, Present & Future Leadership Computers at OLCF, DOE Data/Viz PI Mtg, Jan 2015

Linear Power Extrapolation to Exascale

3043 MW
333 MW 56 MW

(assuming 150 PF)
20 MW - 30 MW

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

We tend to overestimate what is possible in the near term (2-3 years)
… and underestimate what is possible in the next long term (10 years).

synergy.cs.vt.edu	

● ●

●●

● ●

●●●
●●●

●
● ● ●

●
●

● ● ●

0

1

2

3

4

5

08 09 10 11 12 13 14 15

List release year

Po
we

r e
xt

ra
po

la
te

d
to

 e
xa

flo
p

(G
ig

aw
at

ts
)

Top in ● Green500 Top500

190	 MW	

Trends: Extrapolating to Exaflop

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Is Green Exascale Computing
 … an Oxymoron?

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

1.  Timeline Remains 2022 or Later
2.  Funding Investment by DOE Office of

Science

synergy.cs.vt.edu	

Towards Green Exascale Computing

•  A Few Prognostications
 … Towards Optimizing for Performance, Energy, and Power

–  Minimize data movement
§  Shifting focus to I/O rather than compute

–  Traditional visualization vs. in-situ visualization
–  Traditional storage vs. in-situ storage

–  Address energy proportionality
–  Schedule for performance and power

•  How to Enable the Above?
–  Monitoring and measurement.
–  See Session 1: Metrics and Session 2: Monitoring Tools.

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Minimize Data Movement

•  Energy consumed for moving a bit increases as we move down
the memory hierarchy
–  Off-chip transfers cost nearly 100 times as much energy as on-chip transfers!

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

J.Shalf et al., “Exascale Computing Technology
Challenges,” VECPAR 2010

synergy.cs.vt.edu	

Traditional “Post-Processing” Visualization

HPC System

Disks

Nodes

(Simulation runs

here)

Rendering Farm

Rendering
Nodes

(Visualization
takes place here)

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Solution: In-situ Visualization

•  Perform visualization alongside the simulation
–  Create an image representation of data at end of each iteration directly

instead of writing raw data to disk
§  Visualize in-situ, e.g., GPGPU à GPU
§  Write the image representation (reduced size representation) to disk

–  May involve additional sampling strategies (e.g., spatial, temporal, etc.)

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Goal : Minimize Data Movement in Visualization

“Study the performance, power, and energy trade-offs among
traditional post-processing, modern post-processing, and in-situ

visualization pipelines”

•  Detailed sub-component level power measurements within a
node to gain detailed insights (e.g., RAPL)
–  Measure power consumption of CPU, memory, and disk

•  Measurements at scale to understand problems unique to big
supercomputers

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Disk Power Model

•  I/O statistics collected from iostat
•  Number of I/O operations and the amount of data written affects

power consumption of the disk

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Hardware Platform

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Results: Single-Node Energy Comparison

•  In-situ consumes 4% less energy than
modern post-processing

•  Compared to traditional post-processing,
both pipelines consume 93% lower
energy

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Results: Single-Node Storage Requirements

•  97.5% lower storage requirement for the
in-situ pipeline
-  Implies smaller storage cluster
-  Implies lower power consumption

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Re-distributing Storage Power to Compute Nodes

•  Assuming reduced storage nodes results
in 10% of total power redirected to
compute nodes
-  Performance improves by up to 6%

for MPAS Ocean Simulation
§  Data from power-capping

experiments with RAPL

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Results at Scale: Hardware Platform

•  Caddy supercomputer with a dedicated Lustre file system
used for profiling

•  Compute nodes
–  64 nodes out of 150 nodes used in these experiments

§  Each node contains 2x Intel Xeon E5-2670 and 64 GB of RAM

–  Nominal power consumption
§  6000 W (idle) to 20000 W (workload such as MPAS)

•  Storage nodes
–  5 nodes configured as 1 master + 2 MDS + 2 OSS
–  1 RAID storage per MDS and OSS
–  Nominal power consumption

§  2500W (idle) to 2800W (active)

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

Lacking in energy
proportionality

Lacking in energy
proportionality

synergy.cs.vt.edu	

Results at Scale: Energy Comparison

Real measurements on Caddy supercomputer
at Los Alamos National Laboratory

Partial measurement on Caddy and
extrapolation from spec sheets

19% ↓

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Projections for Supercomputing

•  Increased I/O wait time
–  Storage separated from compute by network
–  Longer execution time and corresponding increase in energy

•  Additional energy consumption from data movement through
the network
–  No data transfer via network cables in single-node system

•  Power/energy overhead for storage higher
–  Separate cluster for storage à additional CPUs, memory, cooling, etc.
–  Storage sub-system shared with compute sub-system in single node

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Findings : Minimizing Data Movement
(a.k.a. “The Case of the Missing Supercomputer Energy”)

Two Takeaways for “Missing Energy”
•  Most energy savings come from reducing system idling

(i.e., from reduced I/O wait time)
•  Further savings possible if we can reduce the size of the

storage nodes (or storage system)

Advantages of In-situ Visualization
•  Reduced energy consumption

–  By reducing system idling or I/O wait time

•  Reduced power
–  By using fewer storage nodes

•  Improved performance
–  By reducing I/O wait time and by making more power available for

compute nodes

 © W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Future Directions for Green Exascale Computing

•  Enhancing HPC Systems
–  Flash buffers and SSDs can reduce I/O wait time

§  Downside: Introducing more components can increase power
consumption as well as impact reliability

•  Changing HPC System Design
–  Bringing storage nodes and compute nodes together

§  Similar to “Memory in Processor” or “Processor in Memory” concepts in
the computer architecture community

•  Changing Runtime System
–  Energy proportional computing and storage

§  Putting compute nodes to sleep states during I/O
§  Putting some storage nodes to deep sleep state when bandwidth and

storage requirements are lower

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Towards Green Exascale Computing

•  A Few Prognostications Towards Optimizing for Performance,
Energy, and Power …
–  Minimize data movement

§  Traditional visualization vs. in-situ visualization
§  Traditional storage vs. in-situ storage

–  Address energy proportionality
–  Schedule for performance and power

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Consume power proportional to utilization (or load-level)

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Consume power proportional to utilization (or load-level)

Be#er	 than	 energy-‐
propor/onal	 opera/on	 	

Energy-‐propor7onal	 opera7on	

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Energy Proportionality – Full System

Dynamic	 power	 range	 =	 198	 wa@s	 	
(64%	 of	 peak	 power)	

Full	 system	 idles	 at	
35%	 of	 peak	 power	

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Power Savings via RAPL – Full System

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

•  CPU+Mem achieves best overall power savings (19% power saved)
•  Energy-proportional operation for 80% load-level (via power capping)
•  Achieving ideal non-peak power lessens as load-level decreases

synergy.cs.vt.edu	

Energy Proportionality

B. Subramaniam and W. Feng, “Towards Energy-Proportional
Computing for Enterprise-Class Server Workloads,” ACM/SPEC
Int’l Conf. on Performance Engineering, April 2013. Best Paper Award.

Future Work
–  Fully automate and apply to HPC workloads
–  Power sloshing across a system
 … rather than just within the CPU

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Towards Green Exascale Computing

•  A Few Prognostications Towards Optimizing for Performance,
Energy, and Power …
–  Minimize data movement

§  Traditional visualization vs. in-situ visualization
§  Traditional storage vs. in-situ storage

–  Address energy proportionality
–  Schedule for performance and power

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

OpenMP Accelerator Behavior

Original/Master thread Worker threads Parallel region Accelerated region

#pragma omp acc_region …

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

OpenMP Accelerator Behavior

Original/Master thread Worker threads Parallel region Accelerated region

#pragma omp parallel …

#pragma omp acc_region …

Kernels

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

What We Want:
Work-share a Region Across the Whole System

Original/Master thread Worker threads Parallel region Accelerated region

#pragma omp acc_region …

#pragma omp parallel …

OR

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Automated Scheduling and Load-Balancing

•  Measure computational suitability at runtime
•  Compute new distribution of work
 … through a linear optimization approach
•  Re-distribute work before each pass

OpenMP implementation with coscheduling. This goal imposes de-
sign constraints. Most importantly, it must not require any changes,
even for memory movement, to the loop body beyond those for Ac-
celerated OpenMP. For example, no pragmas or API calls may be
inserted into the loop, nor memory access patterns be changed, as
task scheduling systems often require. All information necessary
for CoreTSAR to provide the correct data for any range of itera-
tions to any device’s memory space must be provided in the direc-
tive outside the loop. Further, we must preserve data consistency
outside the region: main memory must hold the same values when
the loop exits as it would have with Accelerated OpenMP.

Our design has two main components: the scheduling and task
inference portion; and the memory specification and management
portion. We now detail both and provide an example of their use.

3.1 Assigning Tasks
With homogeneous iterations and resources, the OpenMP static
schedule yields high performance. Since iterations can vary in run-
time, OpenMP supports additional schedule types (dynamic and
guided) to improve load balance. These schedules target hetero-
geneous iterations on homogeneous resources that have low con-
currency control costs. However, they are less appropriate for het-
erogeneous resources due to varying costs and synchronization re-
quirements. Since CoreTSAR targets heterogeneous resources with
distributed memories, we provide different schedules.

Our adaptive scheduler assigns iterations at the beginning of
parallel regions, or sub-regions. This approach reduces locking
overhead but does not balance load dynamically. To provide bal-
anced schedules, CoreTSAR predicts the time to compute an itera-
tion on each resource based on previous passes.

CoreTSAR tracks the average time to complete an iteration on
each device, which it uses to predict the amount of work each de-
vice can complete in the next pass. For example, consider a system
with two CPU cores and one GPU (one CPU core must control the
GPU). If the CPU core completes 10 iterations in the same time that
the GPU takes to copy in data, complete 40 iterations, and to copy
back the results, then the CPU should be assigned 20% of the iter-
ations in the next pass. We thus determine the relationship between
compute units and can compute the amount of work to provide each
device to balance their loads. However, we must extend this simple
approach to more than two devices and choose an initial split.

3.2 Applying Ratios
We use a linear program to extend our approach to arbitrary device
counts, a version of which was discussed briefly in our previous
work [22]. The linear program computes the iterations to assign
to each device based on their time per iteration. Figure 2 lists its
variables (Equation 1), objective function (Equation 2) and accom-
panying constraints (Equations 3-6). The program minimizes the
total deviation between the predicted runtimes for all devices. We
assume that performance of an average iteration does not change
across region instances. Thus, the time for a device to finish its
work in the next pass equals the time per iteration from the previ-
ous pass multiplied by its assigned iteration count. In practice this
assumption holds well: although the cost of iterations varies, the
same iteration in different passes often has similar performance,
rendering accuracy within a few percent for our tests.

3.3 Static Scheduling
On the first entry into a region, our static schedule uses the linear
program to assign iterations. To increase portability, we compute
default relative times per iteration at runtime rather than using a
precomputed static value (the user can also specify the ratio). Our
default assumes that one instruction cycle on a GPU core takes
the same time as one cycle on a single SIMD lane of a CPU.

I = total iterations available

ij = iterations for compute unit j

fj = fraction of iterations for compute unit j

pj = recent time/iteration for compute unit j (1)

n = number of compute devices

t+j (or t�j) = time over (or under) equal

min(
n�1X

j=1

t+1 + t�1 · · ·+ t+n�1 + t�n�1) (2)

nX

j=0

ij = I (3)

i2 ⇤ p2 � i1 ⇤ p1 = t+1 � t�1 (4)

i3 ⇤ p3 � i1 ⇤ p1 = t+2 � t�2 (5)

...

in ⇤ pn � i1 ⇤ p1 = t+n�1 � t�n�1 (6)

Figure 2: Linear program variables, objective and constraints

While this assumption does not hold in general, we can portably
compute an initial time per iteration for each device. We compute
the time per iteration for a GPU as pg = 1

m/s and for CPU cores as
1 � pg (where m is the number of multiprocessors on a GPU and
s the SIMD width of a CPU core; in the case of multiple GPUs,
we use the largest value). For applications that are not dominated
by floating-point computation, we have considered models that
include several other factors, including memory bandwidth and
integer performance, none of which have significantly changed our
results.

3.4 Adaptive Scheduling
Our adaptive schedules (Adaptive, Split and Quick) use the static
schedule for the first pass. We then use the time that each device
takes to complete its iterations in the preceding pass as input to
our linear program for the next pass. We include all recurring data
transfer and similar overheads required to execute an iteration on a
particular device (but not one-time overheads such as the copying
of persistent data). Thus, we incorporate those overheads into the
cost of the iteration and naturally account for them. The Adaptive
schedule trains on the first instance of the region and then each
subsequent instance. The Split schedule accommodates regions that
may only run once or that may benefit from scheduling more often.
It breaks each region instance into several evenly split sub-regions,
based on the div input. Each time a sub-region completes, we use
the linear program to split the next. This schedule can provide better
load balance at the cost of increased scheduling and kernel launch
overhead. Thus, it is impractical for short regions and overhead
sensitive applications. The Quick schedule balances between the
Split and Adaptive schedules by executing a small sub-region for its
first training phase, similarly to Split. It then immediately schedules
all remaining iterations of the first region instance and uses the
Adaptive schedule for any subsequent instances. This schedule suits
applications that cannot tolerate a full instance using the static
schedule or the overhead of extra scheduling steps in every pass.

3.5 Memory Management
Moving exactly the data required is essential to efficient and correct
region execution across multiple memory spaces. Thus, we allow
the user to specify the association between a loop iteration and in-

3 2013/1/6

CoreTSAR: Task-Size Adapting Runtime A:7

Original With GPU back−off

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Adaptive
Split

1 2 3 4 1 2 3 4
Number of GPUs

Pe
rc

en
ta

ge
 o

f t
im

e
in

 e
ac

h
ph

as
e

Program phase Compute Scheduling

(a) Percentage of time spent on computation
and scheduling

min(
n�1X

j=1

t+j + t�j) (7)

nX

j=1

fj = 1 (8)

f2 ⇤ p2 � f1 ⇤ p1 = t+1 � t�1 (9)

f3 ⇤ p3 � f1 ⇤ p1 = t+2 � t�2 (10)

...

fn ⇤ pn � f1 ⇤ p1 = t+n�1 � t�n�1 (11)

(b) Modified objective and constraints

Fig. 5: Linear program optimization and performance

exactly that linear program. In order to ensure the solve itself is efficient, CoreTSAR
employs the lp solve library[Berkelaar et al. 2003], an optimized linear program solver
that can refine an existing solved tableau for a new set of inputs. This incremental ap-
proach reduces overhead since each pass tends to have similar inputs.

//items in {} are optional

#pragma acc region \

hetero(<cond>{,<devices>{,<sched.>{,<ratio>{,<div>}}}})\

pcopy{in/out}(<var>[<cond>:<num>{:<boundary>}])\

persist(<var>)

#pragma acc depersist(<var>)

hetero() inputs
<cond> Boolean, true=coschedule, false=ignore

<devices> Allowable devices (cpu/gpu/all)
<scheduler> Scheduler to use for this region

<ratio> Initial split between CPU and GPU.
<div> How many times to divide the iteration space

pcopy() and {de}persist() inputs
<var> Variable to copy.

<size> Size of each “item” in the array/matrix.
<cond> Whether this dimension should be copied.
<num> Number of items in this dimension.

<boundary> Number of boundary elements required.

Fig. 3: Our proposed extension

Figure ?? represents the time spent
in CoreTSAR scheduling 1,900 passes
through a region, or 19,000 schedul-
ing iterations with the split scheduler.
The original linear model has exponen-
tial time complexity as the number of
devices increases. In the worst case,
the split schedule with four GPUs, the
scheduling takes nearly 3⇥ longer than
the 40-second compute phase.

Two issues reduce solver performance.
The input has widely distributed val-
ues, which leads to numerical instability
and slows convergence due to frequent
floating-point error corrections. Also, all
outputs require integer values, which re-
quires the solver to refine an optimal so-
lution into an optimal integer solution
across those values, which significantly
increases computational complexity.

To alleviate these issues we remove integer output requirements by computing the
percentage of iterations to assign to each device. This choice also keeps nearly all val-
ues between zero and one, improving numerical stability. Figure ?? shows the new
objective function (Equation 7) and constraints (Equations 8-11). These changes pro-
duce the optimized results in Figure ??. With this version, the time in CoreTSAR can
actually decrease as the number of GPUs increases due to the consistency of GPU per-
formance across passes. Despite the larger matrix, the solution converges faster since
it deviates less from the previous solution.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Our CoreTSAR Results vs. OmpSs and StarPU

gemm helmholtz kmeans

0

10

20

30

0.0

0.5

1.0

1.5

0

2

4

CoreTSAROmpSs StarPU CoreTSAROmpSs StarPU CoreTSAROmpSs StarPU
Scheduler

Sp
ee

du
p

ov
er

 8
 c

or
e

O
pe

nM
P

Scheduler
GPU

Static

Adaptive

Split

Quick

Chunk

Chunk static

Chunk dynamic

Hybrid chunk

OmpSs

StarPU

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Scheduling and Load-Balancing by Adaptation

•  Measure computational suitability at runtime
•  Compute new distribution of work
 … through a linear optimization approach
•  Re-distribute work before each pass

OpenMP implementation with coscheduling. This goal imposes de-
sign constraints. Most importantly, it must not require any changes,
even for memory movement, to the loop body beyond those for Ac-
celerated OpenMP. For example, no pragmas or API calls may be
inserted into the loop, nor memory access patterns be changed, as
task scheduling systems often require. All information necessary
for CoreTSAR to provide the correct data for any range of itera-
tions to any device’s memory space must be provided in the direc-
tive outside the loop. Further, we must preserve data consistency
outside the region: main memory must hold the same values when
the loop exits as it would have with Accelerated OpenMP.

Our design has two main components: the scheduling and task
inference portion; and the memory specification and management
portion. We now detail both and provide an example of their use.

3.1 Assigning Tasks
With homogeneous iterations and resources, the OpenMP static
schedule yields high performance. Since iterations can vary in run-
time, OpenMP supports additional schedule types (dynamic and
guided) to improve load balance. These schedules target hetero-
geneous iterations on homogeneous resources that have low con-
currency control costs. However, they are less appropriate for het-
erogeneous resources due to varying costs and synchronization re-
quirements. Since CoreTSAR targets heterogeneous resources with
distributed memories, we provide different schedules.

Our adaptive scheduler assigns iterations at the beginning of
parallel regions, or sub-regions. This approach reduces locking
overhead but does not balance load dynamically. To provide bal-
anced schedules, CoreTSAR predicts the time to compute an itera-
tion on each resource based on previous passes.

CoreTSAR tracks the average time to complete an iteration on
each device, which it uses to predict the amount of work each de-
vice can complete in the next pass. For example, consider a system
with two CPU cores and one GPU (one CPU core must control the
GPU). If the CPU core completes 10 iterations in the same time that
the GPU takes to copy in data, complete 40 iterations, and to copy
back the results, then the CPU should be assigned 20% of the iter-
ations in the next pass. We thus determine the relationship between
compute units and can compute the amount of work to provide each
device to balance their loads. However, we must extend this simple
approach to more than two devices and choose an initial split.

3.2 Applying Ratios
We use a linear program to extend our approach to arbitrary device
counts, a version of which was discussed briefly in our previous
work [22]. The linear program computes the iterations to assign
to each device based on their time per iteration. Figure 2 lists its
variables (Equation 1), objective function (Equation 2) and accom-
panying constraints (Equations 3-6). The program minimizes the
total deviation between the predicted runtimes for all devices. We
assume that performance of an average iteration does not change
across region instances. Thus, the time for a device to finish its
work in the next pass equals the time per iteration from the previ-
ous pass multiplied by its assigned iteration count. In practice this
assumption holds well: although the cost of iterations varies, the
same iteration in different passes often has similar performance,
rendering accuracy within a few percent for our tests.

3.3 Static Scheduling
On the first entry into a region, our static schedule uses the linear
program to assign iterations. To increase portability, we compute
default relative times per iteration at runtime rather than using a
precomputed static value (the user can also specify the ratio). Our
default assumes that one instruction cycle on a GPU core takes
the same time as one cycle on a single SIMD lane of a CPU.

I = total iterations available

ij = iterations for compute unit j

fj = fraction of iterations for compute unit j

pj = recent time/iteration for compute unit j (1)

n = number of compute devices

t+j (or t�j) = time over (or under) equal

min(
n�1X

j=1

t+1 + t�1 · · ·+ t+n�1 + t�n�1) (2)

nX

j=0

ij = I (3)

i2 ⇤ p2 � i1 ⇤ p1 = t+1 � t�1 (4)

i3 ⇤ p3 � i1 ⇤ p1 = t+2 � t�2 (5)

...

in ⇤ pn � i1 ⇤ p1 = t+n�1 � t�n�1 (6)

Figure 2: Linear program variables, objective and constraints

While this assumption does not hold in general, we can portably
compute an initial time per iteration for each device. We compute
the time per iteration for a GPU as pg = 1

m/s and for CPU cores as
1 � pg (where m is the number of multiprocessors on a GPU and
s the SIMD width of a CPU core; in the case of multiple GPUs,
we use the largest value). For applications that are not dominated
by floating-point computation, we have considered models that
include several other factors, including memory bandwidth and
integer performance, none of which have significantly changed our
results.

3.4 Adaptive Scheduling
Our adaptive schedules (Adaptive, Split and Quick) use the static
schedule for the first pass. We then use the time that each device
takes to complete its iterations in the preceding pass as input to
our linear program for the next pass. We include all recurring data
transfer and similar overheads required to execute an iteration on a
particular device (but not one-time overheads such as the copying
of persistent data). Thus, we incorporate those overheads into the
cost of the iteration and naturally account for them. The Adaptive
schedule trains on the first instance of the region and then each
subsequent instance. The Split schedule accommodates regions that
may only run once or that may benefit from scheduling more often.
It breaks each region instance into several evenly split sub-regions,
based on the div input. Each time a sub-region completes, we use
the linear program to split the next. This schedule can provide better
load balance at the cost of increased scheduling and kernel launch
overhead. Thus, it is impractical for short regions and overhead
sensitive applications. The Quick schedule balances between the
Split and Adaptive schedules by executing a small sub-region for its
first training phase, similarly to Split. It then immediately schedules
all remaining iterations of the first region instance and uses the
Adaptive schedule for any subsequent instances. This schedule suits
applications that cannot tolerate a full instance using the static
schedule or the overhead of extra scheduling steps in every pass.

3.5 Memory Management
Moving exactly the data required is essential to efficient and correct
region execution across multiple memory spaces. Thus, we allow
the user to specify the association between a loop iteration and in-

3 2013/1/6

CoreTSAR: Task-Size Adapting Runtime A:7

Original With GPU back−off

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Adaptive
Split

1 2 3 4 1 2 3 4
Number of GPUs

Pe
rc

en
ta

ge
 o

f t
im

e
in

 e
ac

h
ph

as
e

Program phase Compute Scheduling

(a) Percentage of time spent on computation
and scheduling

min(
n�1X

j=1

t+j + t�j) (7)

nX

j=1

fj = 1 (8)

f2 ⇤ p2 � f1 ⇤ p1 = t+1 � t�1 (9)

f3 ⇤ p3 � f1 ⇤ p1 = t+2 � t�2 (10)

...

fn ⇤ pn � f1 ⇤ p1 = t+n�1 � t�n�1 (11)

(b) Modified objective and constraints

Fig. 5: Linear program optimization and performance

exactly that linear program. In order to ensure the solve itself is efficient, CoreTSAR
employs the lp solve library[Berkelaar et al. 2003], an optimized linear program solver
that can refine an existing solved tableau for a new set of inputs. This incremental ap-
proach reduces overhead since each pass tends to have similar inputs.

//items in {} are optional

#pragma acc region \

hetero(<cond>{,<devices>{,<sched.>{,<ratio>{,<div>}}}})\

pcopy{in/out}(<var>[<cond>:<num>{:<boundary>}])\

persist(<var>)

#pragma acc depersist(<var>)

hetero() inputs
<cond> Boolean, true=coschedule, false=ignore

<devices> Allowable devices (cpu/gpu/all)
<scheduler> Scheduler to use for this region

<ratio> Initial split between CPU and GPU.
<div> How many times to divide the iteration space

pcopy() and {de}persist() inputs
<var> Variable to copy.

<size> Size of each “item” in the array/matrix.
<cond> Whether this dimension should be copied.
<num> Number of items in this dimension.

<boundary> Number of boundary elements required.

Fig. 3: Our proposed extension

Figure ?? represents the time spent
in CoreTSAR scheduling 1,900 passes
through a region, or 19,000 schedul-
ing iterations with the split scheduler.
The original linear model has exponen-
tial time complexity as the number of
devices increases. In the worst case,
the split schedule with four GPUs, the
scheduling takes nearly 3⇥ longer than
the 40-second compute phase.

Two issues reduce solver performance.
The input has widely distributed val-
ues, which leads to numerical instability
and slows convergence due to frequent
floating-point error corrections. Also, all
outputs require integer values, which re-
quires the solver to refine an optimal so-
lution into an optimal integer solution
across those values, which significantly
increases computational complexity.

To alleviate these issues we remove integer output requirements by computing the
percentage of iterations to assign to each device. This choice also keeps nearly all val-
ues between zero and one, improving numerical stability. Figure ?? shows the new
objective function (Equation 7) and constraints (Equations 8-11). These changes pro-
duce the optimized results in Figure ??. With this version, the time in CoreTSAR can
actually decrease as the number of GPUs increases due to the consistency of GPU per-
formance across passes. Despite the larger matrix, the solution converges faster since
it deviates less from the previous solution.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Transform from automated performance optimization
… to automated power (or energy) optimization

at run time

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Summary for CoreTSAR and Beyond

•  Goal
–  Maximize performance (i.e., reduce execution time) of an application

running on state-of-the-art HPC system (e.g., heterogeneous systems)
under a given power budget by moving around power for various
components of a HPC system.
§  Takeaway Message

–  Make the most efficient use of power across a HPC system
(via monitoring)

•  Power Management System for HPC Systems
–  Framework to decide the power budget for different components for

different workloads à “TurboBoost” across a node & between nodes?

•  Runtime System
–  Guarantee power limit not exceeding while maximizing performance

for the given power budget

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

Conclusion:
Is Green Exascale Computing an Oxymoron?
•  Green exascale computing is (optimistically) possible

 … with current timeline & continued funding investment
•  Some research approaches (to complement the vendors)

–  Minimize data movement
§  Continue efforts on green compute but pay attention to other subsystems

and their interactions, i.e., minimize data movement, via monitoring
§  Traditional visualization vs. in-situ visualization

–  The Case of the Missing Supercomputer Energy

–  Know where power and energy are going and address via scheduling,
feature leveraging, and working with vendors
§  Automated scheduling (CoreTSAR) but for power (or perf & power)
§  Energy proportionality, not just for enterprise workloads but also for

HPC, e.g., job submission scheduling.
–  Handful of nodes idle. Need to be energy proportional

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

synergy.cs.vt.edu	

http://synergy.cs.vt.edu/

http://www.mpiblast.org/

http://sss.cs.vt.edu/

http://www.green500.org/

http://myvice.cs.vt.edu/

http://www.chrec.org/

http://accel.cs.vt.edu/

“Accelerators ‘R Us”!

Wu	 Feng,	 wfeng@vt.edu,	 540-‐231-‐1192	

© W. Feng, HPM, wfeng@vt.edu, 540.315.1545

