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Project Objective

Advance the state of the art in system scheduling and
resource management for extreme scale geographically
distributed computing environments to make best use of

limited resources

— Computing resources: map jobs onto machines in such a way that
maximizes the overall system performance measure, giving the most
time-critical jobs high priority

— Energy resources: map jobs onto machines in such a way that the
overall system operates in the most energy efficient way possible

* Assumptions

— The environment is oversubscribed, with significantly more work than
computing resources

— The computing environment consists of heterogeneous resources
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Project Components

Dynamic Scheduling
Heuristics

Automatic Task
Classification

Data Motion Power
Cost Model

ESSC Database
ESSC Intelligent Job Scheduler

Analytics Enhanced
Scheduling

Signature-Based
Job and Resource
Management

OAK RIDGE

- National Laboratory



Dynamic Scheduling Heuristics Research

- Problem Statement: A workload of diverse serial and parallel tasks arrive
dynamically into an oversubscribed heterogeneous computing environment

The resource manager has knowledge of

— Estimates of execution time and average power consumption for each
possible task-to-machine mapping

— A monotonically decreasing utility function giving the time-decaying
value for each task

Goal of the resource manager
— Maximize total utility earned from tasks during the day

— May be constrained by energy budget for the day

The scheduling problem is NP-hard
— Cannot find optimal solution in reasonable time
— Use heuristics

Can use bi-objective optimization to study trade-offs between utility earned

and energy consumed
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Measuring a Job’s Relative Value: Utility

8
;o
o\
>, 5 \\\ ~task-completion
= 4 ! time = 47
3 : I : =
)  task completion _j\utility 2.8
1  time = 10 '\
. | utility = 5.3 I
0] 10 20 30 40 50 60
time to complete after arrival

« Each job is characterized in terms of
— Periority: the initial value of the job
— Urgency: the rate of decay of the job’s value

- Each potential task/machine pairing has values that describe the Estimated
Time to Compute (ETC) and Average Power Consumption (APC)
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Source: H.J. Siegel, Colorado State University

Example Simulation Study
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Comparison to Moab in ESSC Testbed
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Trade-Offs Between Utility and Energy

utility gained vs. energy consumption
(15 machine types, 30 machines, 20 task types, 1000 tasks)
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A Pareto front contains all the resource allocations

not “dominated” by any other resource allocation
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Can we improve scheduling with
predictive analytics?

Job arrivals

@

: Scheduling
Developed arrival [:
nodels of Jobs

Hypothesis:

Having some knowledge of “what
IS coming” enables better
scheduling
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Modeling of arrivals

Source: Sarah Powers, Oak Ridge National Laboratory

Problem can be formulated as a Mixed
Integer Program

- . N
Q Machines Utility
~J3 12 1 Cluster 1 ~ Cluster 2 — [ earned
ﬂ' ” “ PE1 || PE2 PE1 || PE2 ouU
\ > | 22U
PE3 || PE4 PE3 || PE4 A\
e J4 — PES || PE6 < oU
I‘ g —_— ‘l_ 2
\ A\
Cluster N »
o0 PE1 || PE2 | ||—> CUs
o " [[=] ﬂ NP
AN
_J A - _J
Y v

kb Prediction /

Scheduling algorithms

%OAK RIDGE

National Laboratory



A simple prediction illustration

* Scheduling occurs at fixed intervals w
* A job may arrive just after the scheduling time w
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Source: Suzanne Rivoire, Sonoma State University

Classifying power traces of known tasks

Known power traces

Task A Task B Task C

Unknown trace

—

1.

Compress each trace into
a signature

[DCSkewness, DCKurtosis,
DCNonlinearity,
DCSerialCorrelation, Hurst,
kurtosis, lyapunov, max, mean,
median, min, nonlinearity,
skewness, standard_deviation,
serial_correlation, trend]

Create a classifier

Guess which task
generated each unknown
trace

Accuracy for our ~220
traces: 85-95% from very
simple models
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Known power traces

Task A Task B Task C

Recent unknown traces

Source: Suzanne Rivoire, Sonoma State University

Adapting to new task patterns

—

1. Quantify certainty of

task identification
To inform scheduling
decisions
To recognize new tasks
Result: Certainty values track
prediction accuracy.

2. Detect novelties: have
| ever seen this task

before?

= Result: Detect 80% of novelties
(even with similar CPU-bound
workloads), with 4% false positives

3. Dynamically adjust
training set: group
related novelty traces
into new tasks, so they
can be recognized in
the future
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Signature-Based Resource Management

* Viewing job scheduling as a Tetris game
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* Driven by power usage patterns. Can we:

— Associate a pattern with each application?
* Do applications exhibit consistent power behavior?
* How can we represent an application’s power behavior?

* How similar is that behavior across different runs, inputs,
configurations, and hardware?

— Enhance scheduler with pattern information?
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Signature-Based Optimization

« Computing optimal schedules is very difficult.

* Traditional heuristics are good at minimizing
makespan but not peak power demand.

* Modern heuristics constrain peak power too hard,
resulting in longer makespan.

* Appropriate problem formulation is the key!
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Source: Tiffany Mintz, Oak Ridge National Laboratory

Data Motion Power Cost Models

* Incremental derivation based on hierarchical
representation of data motion

Cluster
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Approach

« Express each level of hierarchy as a system of
connected components

 Functionally describe power consumption for
components essential to data movement

Connected System

Locale: PO

Intra-locale Locale: P1
data motion

Inter-locale
data motion

Locale: P2 Locale: P3
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Possible Future Directions (1)

Allow the Intelligent Job Scheduler to preempt jobs

— Currently, once a job has been placed onto resources, it remains on
those resources until it completes

— Preemption allows jobs to be suspended in favor of other more
valuable jobs that arrive into the work queue

— Important to constrain the conditions under which preemption happens
so the schedules are solvable

Introduce demand-response capabilities

— Demand-response allows an HPC facility to cooperate with its Energy
Service Provider in consuming energy

— Exchange knowledge of when energy demand might be high or when
supply might be constrained

— Understanding local demand can be useful in determining whether to
move a job to a geographically different location
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Possible Future Directions (2)

- Address issues related to trapped capacity

— Pack jobs onto resources with awareness of both utility and trapped
capacity, trying to reduce trapped capacity

— Can we improve overall trapped capacity by moving waiting jobs to
sites that have a high measure of trapped capacity?

* Allow topology-aware placement of tasks

— In addition to scheduling jobs on the basis of utility and energy,
schedule and/or place jobs onto resources to take into consideration

the network topology connecting the resources

— Topology-aware placement can reduce latency in parallel jobs,
improving the time required to complete a given job
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