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Project Objective 

•  Advance the state of the art in system scheduling and 
resource management for extreme scale geographically 
distributed computing environments to make best use of 
limited resources 
–  Computing resources: map jobs onto machines in such a way that 

maximizes the overall system performance measure, giving the most 
time-critical jobs high priority 

–  Energy resources: map jobs onto machines in such a way that the 
overall system operates in the most energy efficient way possible 

•  Assumptions 
–  The environment is oversubscribed, with significantly more work than 

computing resources 
–  The computing environment consists of heterogeneous resources 
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Project Components 

Data Motion Power 
Cost Model Dynamic Scheduling 

Heuristics 

Signature-Based 
Job and Resource 
       Management 

Analytics Enhanced 
Scheduling  

ESSC Database 
ESSC Intelligent Job Scheduler 

Automatic Task 
Classification 
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Dynamic Scheduling Heuristics Research 
•  Problem Statement:  A workload of diverse serial and parallel tasks arrive 

dynamically into an oversubscribed heterogeneous computing environment  

•  The resource manager has knowledge of 
–  Estimates of execution time and average power consumption for each 

possible task-to-machine mapping 
–  A monotonically decreasing utility function giving the time-decaying 

value for each task 

•  Goal of the resource manager 
–  Maximize total utility earned from tasks during the day 
–  May be constrained by energy budget for the day 

•  The scheduling problem is NP-hard 
–  Cannot find optimal solution in reasonable time 
–  Use heuristics 

•  Can use bi-objective optimization to study trade-offs between utility earned 
and energy consumed 

Source: H.J. Siegel, Colorado State University 
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Measuring a Job’s Relative Value: Utility 

•  Each job is characterized in terms of 
–  Priority: the initial value of the job 
–  Urgency: the rate of decay of the job’s value 

•  Each potential task/machine pairing has values that describe the Estimated 
Time to Compute (ETC) and Average Power Consumption (APC) 
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Random FCFS-based utility-based 

Example Simulation Study  
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FCFS: First Come First Served  

•  36,000 tasks, 100 machines, averaged over 48 trials 

Source: H.J. Siegel, Colorado State University 
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Comparison to Moab in ESSC Testbed 
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Trade-Offs Between Utility and Energy 

•  A Pareto front contains all the resource allocations  
not “dominated” by any other resource allocation  

Source: H.J. Siegel, Colorado State University 
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Scheduling 
of Jobs 

	
  

Developed	
  arrival	
  
models	
  

Can we improve scheduling with 
predictive analytics? 

 
 Hypothesis: 

 

Having some knowledge of “what 
is coming” enables better 

scheduling 
 

	
  

Job	
  arrivals	
  

Source: Sarah Powers, Oak Ridge National Laboratory 
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Problem can be formulated as a Mixed 
Integer Program 

Prediction ���

Source: Sarah Powers, Oak Ridge National Laboratory 
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A simple prediction illustration 
•  Scheduling	
  occurs	
  at	
  fixed	
  intervals	
  w	
  
•  A	
  job	
  may	
  arrive	
  just	
  a<er	
  the	
  scheduling	
  =me	
  w	
  

Take-away 
 

Predictive 
analytics is 

beneficial (e.g., 
more effective 

machine 
utilization, 

higher utility) 
 

Source: Sarah Powers, Oak Ridge National Laboratory 
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Classifying power traces of known tasks  

Task A Task B   Task C 

Known power traces 

Unknown trace 
Accuracy for our ~220 

traces: 85-95% from very 
simple models 

1.  Compress each trace into 
a signature  
[DCSkewness, DCKurtosis, 
DCNonlinearity, 
DCSerialCorrelation, Hurst, 
kurtosis, lyapunov, max, mean, 
median, min, nonlinearity, 
skewness, standard_deviation, 
serial_correlation, trend] 

2.  Create a classifier 
 
3.  Guess which task 

generated each unknown 
trace 

 

Source: Suzanne Rivoire, Sonoma State University 
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Adapting to new task patterns 

Task A Task B   Task C 

Known power traces 

Recent unknown traces 

1.  Quantify certainty of 
task identification 

•  To inform scheduling 
decisions 

•  To recognize new tasks 
Result: Certainty values track 
prediction accuracy. 

2.  Detect novelties: have 
I ever seen this task 
before? 

Result: Detect 80% of novelties 
(even with similar CPU-bound 
workloads), with 4% false positives 
 
3.  Dynamically adjust 

training set: group 
related novelty traces 
into new tasks, so they 
can be recognized in 
the future 

 

Source: Suzanne Rivoire, Sonoma State University 
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Signature-Based Resource Management 
• Viewing job scheduling as a Tetris game 

• Driven by power usage patterns.  Can we: 
–  Associate a pattern with each application? 

•  Do applications exhibit consistent power behavior? 
•  How can we represent an application’s power behavior? 
•  How similar is that behavior across different runs, inputs, 

configurations, and hardware? 

–  Enhance scheduler with pattern information?  

Source: Chung-Hsing Hsu, Oak Ridge National Laboratory 
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Signature-Based Optimization 
• Computing optimal schedules is very difficult. 
• Traditional heuristics are good at minimizing 

makespan but not peak power demand. 
• Modern heuristics constrain peak power too hard, 

resulting in longer makespan. 
• Appropriate problem formulation is the key! 
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Source: Chung-Hsing Hsu, Oak Ridge National Laboratory 



Data Motion Power Cost Models 

•  Incremental derivation based on hierarchical 
representation of data motion 

Source: Tiffany Mintz, Oak Ridge National Laboratory 



Approach 
• Express each level of hierarchy as a system of 

connected components 
• Functionally describe power consumption for 

components essential to data movement 
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Source: Tiffany Mintz, Oak Ridge National Laboratory 
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Possible Future Directions (1) 
•  Allow the Intelligent Job Scheduler to preempt jobs 

–  Currently, once a job has been placed onto resources, it remains on 
those resources until it completes 

–  Preemption allows jobs to be suspended in favor of other more 
valuable jobs that arrive into the work queue 

–  Important to constrain the conditions under which preemption happens 
so the schedules are solvable 

•  Introduce demand-response capabilities 
–  Demand-response allows an HPC facility to cooperate with its Energy 

Service Provider in consuming energy 
–  Exchange knowledge of when energy demand might be high or when 

supply might be constrained 
–  Understanding local demand can be useful in determining whether to 

move a job to a geographically different location 
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Possible Future Directions (2) 
•  Address issues related to trapped capacity 

–  Pack jobs onto resources with awareness of both utility and trapped 
capacity, trying to reduce trapped capacity 

–  Can we improve overall trapped capacity by moving waiting jobs to 
sites that have a high measure of trapped capacity? 

•  Allow topology-aware placement of tasks 
–  In addition to scheduling jobs on the basis of utility and energy, 

schedule and/or place jobs onto resources to take into consideration 
the network topology connecting the resources 

–  Topology-aware placement can reduce latency in parallel jobs, 
improving the time required to complete a given job 
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