allinea

High performance tools to debug, profile, and analyze your applications

Application Trapped Capacity and Energy
Reporting

Mark O’Connor

» VP Product Management m

allinea allinea allinea 3allinea

PERFORMANCE

FORGE  DDT MAP REPORTS




Application Trapped Capacity and Energy
Reporting

Q

.

DEVELOPERS. .—"_ allinea
3 : THE INDUSTRY § FORGE

STANDARD HPC C++ AND
, ‘ ‘ F90 DEVELOPMENT aUITE.
A\
THE WORLD'S MOSTISCALABLE DEBUGGER

APPLICATION ANALYTICS -
FOR HPC CLUSTERS INCREASE APPLICATION PERFORMANGE |\a/ll\l‘I:IEa
MAP

allinea

The problem we solve...

From climate modeling to astrophysics, from financial

modeiing to engine design, the povier of clusters and

supercomputers advances the frontiers of knowledge:

and delivers results for industry. Witing and deploying
Software that explolts that comoutina power is

allinea

PERFORMANCE

REPORTS

How well do your applications explolt your hardware?
Allinea Performance Reports are the most effective
way to characterize and understand the performance
of HPC application runs.

2 allinea
X FORGE

Allinea Forge Is the complete ool sulte for software:
development - with everything needed 10 debug,
profile, optimize, edit and build applications for high
performance.

Today: Application-centric
performance tuning and

energy metrics

allinea




in Q

allinea

DEVELOPER TOOLS PERFORMANCE REPORTS TRIALS PURCHASE SUPPORT RESOURCES NEWS EVENTS COMPANY

DEVELOPERS

THE INDUSTRY

STANDARD HPC C++ AND

F90 DEVELOPMENT SUITEg
-

allinea
FORGE

THE WORLD'S MOSTSCALABLE DEBUGGER

ANALYSTS

APPLICATION ANALYTICS

FOR HPC CLUSTERS allinea

MAP

INCREASE APPLICATION PERFORMANCE.

allinea A

PERFORMANCE Y a"Inea
REPORTS FORGE
Allinea Forge is the complete tool sute for software

allinea

The problem we solve...

From climate modeling to astrophysics, from financial
modeling to engine design, the power of clusters and
supercomputers advances the frontiers of knowledge way to and the
of HPC application runs. performance.

How well do your applications exploit your hardware?
development - with everything needed to debug,
profile, optimize, edit and build applications for high

Allinea Performance Reports are the most effective

and delivers results for industry. Writing and deploying
software that exploits that computing power is a

Allinea provides

high-performance
software tools

&

. Los Alamos

NATIONAL LABORATORY

EST. 1943

University of California

Lawrence Livermore

A OAK
RIDGE

A.\'.uiuvml Lab«

A= R s c|

NATIONAL ENERGY RESEARCH
SCIENTIFIC COMPUTING CENTER

Argonne

NATIONAL LABORATORY

B

HLR|S ®

National Laboratory

ICHEC

\\\\ Irish Centre for High-End Computing

ONERA

THE FRENCH AEROSPACE LAB

BAE SYSTEMS

@

[I'L IFERC

BLUE WATERS

SUSTAINED PETASCATE COMPUTING

TOTAL

Barcelona
Supercomputing

Center

Centro Nacional de Supercomputacion

~

A
f(rereee

BERKELEY LAB

Ay Wowor of Lot




File_Edit [View Control Tools Window Help

allinea

Q || & [0 Foan [
L unfold all ﬁ
Focus on Threads Together = v
H “ Increase zoom Ctrl++ *9 ‘ H | &
a I n E a DEVELOPER TOOLS PERFORMANCE REPORTS TRIALS PURCHASE SUPPORT RESOURCES NEWS EVENTS COMPANY Decrease zoom Ctrl+-
B Reset zoom Ctri+0
Project Filet —————————————————Lve openmp.c [ | Locals  CurrentLi.. | Currents... |
Show whitespace Alt+. time_mpi_stop(); _l|current Line(s) 8 x
. Nosplc [variableName  [vaue
allinea DEVELOPERS allinea ﬂ"““’:“'f""‘ st {hsec = 0.
Vertic lit
l > PERFORMANCE THE INDUSTRY FORGE i
i REPORTS STANDARD HPC C#+ AND
F90 DEVELOPMENT SUITEg
- main(int argc, char **arg 0
output_master(void) : voi -
A output_workers(void) : v z
reduce_print{const char * 2
time_mpi_start : void
THE WORLD'S MOSIESCALABLE DEBUGGER - [z time_mpi_stop : void
D . “ [z update(int left, int right)
External Code
APPLICATION ANALYTICS k - \ Frererionsi | _'_I « >
FOR HPC CLUSTERS INCREASE APPLICATION PERFORMANGCE allinea i [fype: none selected
MAP | i Stacks | Tracepoints | Tracepoint Output | Logbook | Evaluate 8 X
8 x [Expression [value |
#-newval —0x0
w-oldval —0x0
I I - ". w-values  ——O0x0
PERFORMANCE 1-' allinea
The problem we solve... REPORTS FORGE
From climate modeling to astrophysics, from financial How well do your applications exploit your hardware? Allinea Forge is the complete tool suite for software
modeling to engine design, the power of clusters and Allinea Performance Reports are the most effective development - with everything needed to debug, =
supercomputers advances the frontiers of knowledge way to and the profile, optimize, edit and build applications for high Vi
and delivers results for industry. Writing and deploying of HPC application runs. performance.
software that exploits that computina power is a
File Edit View Window Help
Hide Metrics...

Allinea Forge

Debug and profile
codes

Started: Fri Nov 7 10:26:34 2014 Runtime: 305

Profiled: wave openmp on 1 process, 4 cores (4 per process)

Application activity

CPU floating-point (%)
(145av9)

Memory usage (k8)
44663 - 72221  (68.908avg)
10:26:34-10:27:04 (29.9755): Main thread compute 14 %, OpenMP 21 %, Overhead 64 %, Sleeping © % | CPU floating-point 14.5 %; Memory usage 68,908 kB; Metrics,|_Select All

© wave_openmp.c 3 |

2278
J 0O 0T RN
1A A
231 X =
K1) _ |
Input/Output | Project Files  Stacks | OpenMP Regions |
Stacks & x
Time " [mp1__[overhead [ Function(s) on line Source | position |
B 2 wave_openmp [program]
& # main wave_openmp.c:324
B update wave openmp.c:357
av.o% [N INNHNENNMAEWEE
37.4% LU 01T (RN 00T T % update._omp_fn.0.constprop.1 value.. wave openmp.c:213
16.2% [0 10 0011 oldval[3] wave_openmp.c:229
a.s%l[l 1[I 1 & omp_in_final #pragma omp pa: value. wave openmp.c:213
0.5% I | 3 others
0.1%] other

[Allinea Ultimate map-smoketest-scripts-5,0 0a365bcf767 Nov. 7 2014

allinea
MAP



allinea

DEVELOPER TOOLS PERFORMANCE REPORTS TRIALS PURCHASE SUPPORT RESOURCES

DEVELOPERS

THE INDUSTRY

) ORTS STANDARD HPC C++ AND
"‘ ‘ F90 DEVELOPMENT SUITE
-
THE WORLD'S MOST SCALABLE DEBUGGER

ANALYSTS

APPLICATION ANALYTICS

FOR HPC CLUSTERS INCREASE APPLICATION PERFORMANCE.

allinea allinea A

PERFORMANCE
The problem we solve... REPORTS t

Q

NEWS EVENTS COMPANY

allinea
FORGE

allinea
MAP

allinea
FORGE

From climate modeling to astrophysics, from financial How well do your applications exploit your hardware? Allinea Forge is the complete tool suite for software
modeling to engine design, the power of clusters and Alinea Performance Reports are the most effective development - with everything needed to debug,
supercomputers advances the frontiers of knowledge way to and the profile, optimize, edit and build applications for high

and delivers results for industry. Writing and deploying of HPC application runs. performance.
software that exploits that computing power is a

Performance

Reports

Monitor and tune
applications

mpiexec -n 4 ./wave_c 8000
4 processes, 1 node (4 physical, 8 logical cores per node)

kaze

Fri Oct 17 17:00:27 2014

30 seconds (1 minute)

allinea

PERFORMANCE

REPORTS

2.1 Ghz CPU frequency

Summary: wave_c is CPU-bound in this configuration

Time spent running application code. High values are usually good.
CPU 885% _ is high; i imizati i
This is high; check the CPU performance section for optimization advice.

11.4% Time spent in MPI calls. High values are usually bad.
MPI A% . This is very low; this code may benefit from increasing the process count.
o Time spent in filesystem 1/0. High values are usually bad.
110 0.0% ‘ This is negligible; there's no need to investigate 1/0 performance.
This application run was CPU-bound. A breakdown of this time and advice for investigating further is in the CPU section below.

As very little time is spent in MP| calls, this code may also benefit from running at larger scales.

CPU

A breakdown of the 88.5% CPU time:

Single-core code 100.0% [N

Scalar numericops  22.4% W

Vector numeric ops 0.0%

Memory accesses 77.6% 1R

The per-core performance is memory-bound. Use a profiler to identify
time-consuming loops and check their cache performance.

No time is spent in vectorized instructions. Check the compiler's
vectorization advice to see why key loops could not be vectorized.

110

A breakdown of the 0.0% 1/O time:

Time in reads %
Time in writes 0.0% |

Effective process read rate  0.00 bytes/s

Effective process write rate  0.00 bytes/s

No time is spent in I/O operations. There's nothing to optimize here!

Me mory

Per-process memory usage may also affect scaling:

Mean process memory usage 49.7 MB [

Peak process memory usage  53.6 MB [N

Peak node memory usage 240% W

The peak node memory usage is very low. You may be able to reduce

the amount of allocation time used by running with fewer MPI processes
and more data on each process.

MPI

A breakdown of the 11.4% MPI time:

Time in collective calls 3.1%
Time in point-to-point calls 96.9%

|
|
Effective process collective rate 31.7kBis I
Effective process point-to-point rate 269 k8/s [ N

Most of the time is spent in point-to-point calls with a very low transfer

rate. This suggests load imbalance is causing synchonization overhead;
use an MPI profiler to investigate further.

Threads

A breakdown of how multiple threads were used:
Computation %
Synchronization 0.0% |
Physical core utilization 100.0% [N
Involuntary context switches per second 18 |

No measurable time is spent in multithreaded code.

A breakdown of how the total J energy was spent:

CPU %

Accelerators %

Peak power ow .

Mean power w

The is responsible for all measured energy usage. Check the CPU

breakdown section to see if it is being well-used.

on this run.

Note: systs level measul were not



Application Trapped Capacity and Energy
Reporting

home/abowen /work/trapped-examples/mmult- o
orig 300 4096

B 1 node (8 physical, 8 logical cores per node)
allinea 15 o8 ver e
PERFORMANCE 15 per node
REPORTS 8 processes g
mars Other TC

Frijul 22 2016 12:18:14 (UTC+01)
463 seconds (about 8 minutes)
home/abowen/work/trapped-examples

Energy Usage

Energy spent running application code. Higher values will
cPy 02 [l reduce rapped capacy

Energy used by other system components. Higher values will
Other 129% [l redce sapped capaciy.

Trapped Capacity 66.8% _ Unused energy. High values indicate unused energy.

To reduce trapped capacity look at vectorization first, for more information see the CPU section below. In addition, look at
memory accesses, also in the CPU section. This job is bound by compute, scheduling it alongside jobs bound by MPI and
1/0 may reduce overall trapped capacity.

Overall Energy CPU Energy

New research: Trapped
Capacity Reports on a per-

application basis

allinea



/home/abowen/work/trapped-examples/mmult- \ \
orig 300 4096 |
= 1 node (8 physical, 8 logical cores per node) |
ERIFIOIQI%}AENQ 15 GiB per node ) %
REPORTS 8 processes o g e
ther
mars R 4 -
s 201 121814 UTeeon, Show trapped capacity per application run
463 seconds (about 8 minutes)
/home/abowen/work/trapped-examples
\

Energy Usage

CPU 20.2% En:‘:g: (srp:pn;er:::‘l)nagma;).plmauon code. Higher values will . . ) . .

- Co-designed with Dr Imam’s team in the Computational
other = B Research and Development Program at the Computing
Trapped Capaciy coos [ e et i s o and Computational Sciences Directorate, ORNL

\
\

To reduce trapped capacity look at vectorization first, for more information see the CPU section below. In addition, look at
memory accesses, also in the CPU section. This job is bound by compute, scheduling it alongside jobs bound by MPI and
1/0O may reduce overall trapped capacity.

Overall Energy CPU Energy

Detailed information on energy usage: A breakdown of the CPU energy usage: Report and Optimize to minimize trapped capacity’
CPU energy usage 5.50wWh W Compute CPU energy usage % . )

Towlenergyusage 107 wh MPI CPU eneray usage % not jUSt wallclock time

Trannes d canaci v, 21.5 Wh . 1/0 CPLl enerav usane %

Measures CPU, GPU and System power usage for each
application run

Application-centric

Trapped Capacity
Reports

Includes actionable advice for users to help them make the
most of the system’s resources




o

allinea

PERFORMANCE

REPORTS

orig 300 4096

15 GIB per node
8 processes
mars

1 node (8 physical, 8 logical cores per node)

CPU

/home/abowen/work/trapped-examples/mmult-

Frijul 22 2016 12:18:14 (UTC+01)
463 seconds (about 8 minutes)

/home/abowen/work/trapped-examples

Energy Usage

CPU 20.2% -

Other 12.9% .

Trapped Capacity s6.c% ||| G

Energy spent running application code. Higher values will
reduce trapped capacity.

Energy used by other system components. Higher values will
reduce trapped capacity.

Unused energy. High values indicate unused energy.

To reduce trapped capacity look at vectorization first, for more information see the CPU section below. In addition, look at
memory accesses, also in the CPU section. This job is bound by compute, scheduling it alongside jobs bound by MP| and

/O may reduce overall trapped capacity.

Overall Energy

Detailed information on energy usage:

CPU energy usage 6.50wh N
Total energy usage 10.7wh
Trapped capacity 21.5wh [l
Total energy budget 32.1 wh N

Mean node power budget 250 w [l
Mean node power g2.sw M

Peak node power 9s.o0w N

The peak power draw is significantly higher than the mean, use a
profiler to identify times when the power draw is low.

CPU Energy

A breakdown of the CPU energy usage:
Compute CPU energy usage 1% [
MPI CPU energy usage

1/0 CPU energy usage

Mean power during compute [ ]
I

Mean power during MPI

= = 2 ® ®

Mean power during I/0

Note: Power and energy values during MPI, 1/0 and compute are
estimated from available information and may not be accurate.

CPU
A breakdown of the 99.2% CPU time:
Scalar numeric ops  50.8% [l

Vector numeric ops  0.0% |

49.2% N

Memory accesses

No time is spent in vectorized instructions. Vectorized
instructions generally require more power than scalar
computation. To reduce trapped capacity check the compiler's
vectorization advice to see if key loops can be vectorized.

Significant time is spent on memory accesses. Memory operations
generally require less power than computation. To reduce trapped
capacity use a profiler to identify time-consuming loops and
check their cache performance.

MPI

A breakdown of the 0.8% MPI time:

Time in collective calls 2.9% |

Time in point-to-point calls 97.1% 1IN
Effective process collective rate 0.00 bytes/s |
Effective process point-to-point rate 33.4 M8/s N

Optimising MPI communication will have little impact on the
trapped capacity.

Memory

Per-process memory usage may also affect scaling:
Mean process memory usage 210 Mi3 [l
Peak process memory usage 406 Mic |

Peak node memory usage 14.0% 11

Threads

A breakdown of how multiple threads were used:
Computation %

Synchronization 0.0% |

Physical core utilization 100.0% [l

System load 100.6% HH
1/0

A breakdown of the 0.0% 1/0 time:

Time in reads 0.0% |
Time in writes 0.0% |

Effective process read rate  0.00 bytes/s |

Effective process write rate  0.00 bytes/s |

No time is spent in I/0, there's nothing to optimise here!



ﬁ /home/abowen/work/trapped-examples/mmult- e
orig 300 4096
allinea | o € phvical & ogical coes per o) AL Trapped Capacity at a glance Actionable advice Detailed breakdown

PERFORMANCE 15 GiB per node
REPORTS 8 processes

mars
Frijul 22 2016 12:18:14 (UTC+01)

R CPU CPU 20.7% - Overall Energy
Detailed information on energy usage:

Energy Usage Othe r 12.3% . CPU energy usage 5.50wh B

Other 1c

Energy spent running application code. Higher values will Total energy usage 10.7Wh
CPU 20.2% - reduce trapped capacity.

Energy used by other system components. Higher values will - . 1 Trapped capacity 21.5 Wh -
Other 295 |l ; ! Trapped Capacity 66.9% -

educe trapped capacity.

32
Trapped Capacity ssox [N Unused eneray. High values idicae unused energy. Total energy budget 32.1wh
. . 250
To reduce trapped capacity look at vectorization first, for more information see the CPU section below. In addition, look at P TO reduce trapped CapaCIty look at VeCtOI'IZ Mean node pOWGf bUdge( 50w _
memory accesses, also in the CPU section. This job is bound by compute, scheduling it alongside jobs bound by MPI and -~ . Mean node power 52.85W M
L - - - 82.¢
1/0 may reduce overall trapped capaciy. A memory accesses, also in the CPU section.
- ~— , . Peak node power 9s.ow IH
Ot h er TC I/O may reduce overall trapped capacity.

Overall Energy CPU Energy The peak power draw is significantly higher than the mean,
Detailed information on energy usage: A breakdown of the CPU energy usage: profi[er to identify times when the power draw is |0W.
CPU energy usage 5.50wh W Compute CPU energy usage % |
Total energy usage 10.7wh M MPI CPU energy usage %
Trapped capacity 21.5Wh 1/0 CPU energy usage %
Total energy budget 32,1 wh . Mean power during compute w
Mean node power budget 250w | Mean power during MPI w
Mean node power 25w M Mean power during 1/0 w
Peak node power 9s.ow Il

A Track CPU and GPU energy use Identify inefficient applications I/O and MPI breakdowns

CPU /0

The peak power draw is significantly higher than the mean, use a
profiler to identify times when the power draw is low.

CPU Threads
A breakdown of the 99.2% CPU time A breakdown of how multiple threads were used C P U E I-] e l g y | .
. - A breakdown of the 0.0% 1/0 time:
Scalar numeric ops  50.5% [l Computation % A breakdown of the 99 . 2% CPU tlme J
:/:(lor numeric ops 4:.::2 \- z:nchrclmzauonl (Lmz: \- A breakdown Of the CPU energy usage: Tlme in reads O 0% |
emory accesses 3 ysical core utilization 100.0 .
stem loa Scalar numeric ops  50.8%

No time is spent in vectorized instructions. Vectorized System load 100.6% HE Compute CPU energy usage % p -
ompetaion 7 e yapped capety check the compher' i Time in writes 0.0% |
Vectorization advice to see if key loops can be vectorized. MPI CPU energy usage % Vector numeric ops 0.0% |
Significant ime is spent on memory accesses. Memory operations Effective process read rate  0.00 bytes/s |
Capacy e & prfte o ety e consuming loops and /O CPU energy usage % Memory accesses 49.2% 1R
check their cache performance. i i /

P Mean power during compute W Effective process write rate  0.00 bytes/s |
MPI 1/0 . No time is spent in vectorized instructions o ) )

Mean power during MPI w ) ) ) No time is spentin I/O, there's nothing to op

A breakdown of the 0.8% MPI time A breakdown of the 0.0% I/0 time |nstru ct|0n5 gene ra”y requ"'e more power
Time in collective calls 2.9% | Time in reads 0.0% | Mean power during 1/0 w ) )
Time in point-to-point calls 97.1% Time in writes 0.0% | computation. To reduce trapped capacity
Effective process collective rate 0.00 bytes/s | Effective process read rate  0.00 bytes/s | Note: POWef and energy va/ues de/ﬂg MP/, / 0 anc Vectorlzatlon adV|ce tO see |f key IOOpS ca
Effective process point-to-point rate 33.4 M/s N Effective process write rate  0.00 bytes/s |

) estimated from available information and may not
Optimising MPI communication will have little impact on the No time is spent in 1/0, there's nothing to optimise here! - L. - .
trapped capacity. Slgnlflcant time IS spent on memory acces



Example 1: application binary not optimized for CPU architecture

/home/abowen/work/trapped-examples/mmult-
orig 300 4096

1 node (8 physical, 8 logical cores per node)

allinea

PERFORMANCE 15 GiB per node

REPORTS 8 processes

mars

CPU

AL

Oth’é r TC

Frijul 22 2016 12:18:14 (UTC+01)
463 seconds (about 8 minutes)

/home/abowen/work/trapped-examples

Energy Usage
CPU 20.2% -

Other 12.9% .

Trapped Capacity ¢6.s% || GTEN

Energy spent running application code. Higher values will
reduce trapped capacity.

Energy used by other system components. Higher values will
reduce trapped capacity.

Unused energy. High values indicate unused energy.

To reduce trapped capacity look at vectorization first, for more information see the CPU section below. In addition, look at
memory accesses, also in the CPU section. This job is bound by compute, scheduling it alongside jobs bound by MPI and

I/O may reduce overall trapped capacity.

Overall Energy

Detailed information on energy usage:

CPU energy usage 5.50 wh
Total energy usage 10.7wh M
Trapped capacity 21.5wh 1
Total energy budget 32.1 wh

Mean node power budget 250w I

Mean node power 82.ew H
Peak node power 9s.ow N
CPU

A breakdown of the 99.2% CPU time:
Scalar numeric ops  50.8% [l
Vector numeric ops  0.0% |

Memory accesses 49.2% 1R

No time is spent in vectorized instructions. Vectorized
instructions generally require more power than scalar
computation. To reduce trapped capacity check the compiler's
vectorization advice to see if key loops can be vectorized.

Significant time is spent on memory accesses. Memory operations
generally require less power than computation. To reduce trapped
capacity use a profiler to identify time-consuming loops and
check their cache performance.



Example 1: recompiled with architecture-specific optimizations

CPU

/home/abowen/work/trapped-examples/mmult-vec
300 256

a"inea 1 node (8 physical, 8 logical cores per node) |
PERFORMANCE 15 GiB per node &
8 processes
REPORTS mars Other TC
Frijul 22 2016 15:19:11 (UTC+01)
301 seconds (about 5 minutes)
/home/abowen/work/trapped-examples
Energy Usage
. Energy spent running application code. Higher values will
CPU 26.1% - reduce trapped capacity.
o Energy used by other system components. Higher values will
Other 12.2% . reduce trapped capacity.
T|'ap ped C apa(i’[y 61.7% _ Unused energy. High values indicate unused energy.

To reduce trapped capacity look at memory accesses first, for more information see the CPU section below. In addition,
look at vectorization, also in the CPU section. This job is bound by compute, scheduling it alongside jobs bound by MPI
and |/O may reduce overall trapped capacity.

Overall Energy

Detailed information on energy usage:

CPU energy usage A3 Wh
Total energy usage 7.97wh
Trapped capacity 12.9wh [l
Total energy budget 20.8 wh N

Mean node power budget 250w

Mean node power 95.6 W N
Peak node power 9s.ow H
CPU

A breakdown of the 97.2% CPU time:
Scalar numericops 17.3%
Vector numericops 37.8% [l

Memory accesses 449% 1R

Significant time is spent on memory accesses. Memory operations
generally require less power than computation. To reduce trapped
capacity use a profiler to identify time-consuming loops and
check their cache performance.



Example 2: CPU idle due to inefficient OpenMP scheduling

CPU
/home/abowen/work/trapped-examples/umult- .
omp-static 300 1024 ,

1 node (8 physical, 8 logical cores per node)

allinea oo '
PERFORMANCE 15 GiB per node l%

REPORTS 1 process, OMP_NUM_THREADS was 8
Other TC
node-5
Frijul 22 2016 14:39:01 (UTC+01)
301 seconds (about 5 minutes)
/home/abowen/work/trapped-examples
Energy Usage
gy g OpenMP
CPU 16.4% Energy spent running application code. Higher values will A breakdown of the 100.0% time in OpenMP regions:
. reduce trapped capacity. Computation 2.0% B
L Energy used by other system components. Higher values will svnchronization 48.0%
Othe' 12.5% . reduce trapped capacity. ! -
Physical core utilization 100.0% I
T]‘ap ped Capa(ity 71.0% _ Unused energy. High values indicate unused energy. System load 55.4%
Significant time is spent synchronizing threads. Sleeping CPU
To reduce trapped capacity look at OpenMP overhead first, for more information see the OpenMP section below. In cores require minimal power. Check which locks cause the most
addition, look at vectorization, see the CPU section below. This job is bound by compute, scheduling it alongside jobs overhead with a profiler and improve workload balance to reduce

bound by MPI and 1/O may reduce overall trapped capacity. trapped capacity.



Example 2: Allinea Forge identifies the inefficient loop

€ umult-omp.c [£3 |

75 #pragma omp parallel for schedule(static)
76 #endif
77 B for(int i=0; i<size; i++)
78 {
79 B for(int j=0:; j<size; j++)
80 {
81 double res = 0.0;
82
0.2% 83 B for(int k=1i; k<size; k++)
84 {
26.5% 4 - er 1ot oo SRS | res += A[i*size+k]*Btranspose[j*size+k]:
N el al aa o, 1 I res += A[i*size+k]*Btranspose[j*size+k]:
87 }
<0.1% 89 C[i*size+]j] += res;

Kl

Input/Output I Project Files | OpenMP Stacks OpenMP Regions I Functions I

OpenMP Regions
Total core time . | Overhead | Function(s) on line Position
=] & umult-omp-static [program]
=] & umult [inlined] umult-omp.c:131
=] % umult [OpenMP region 2] umult-omp.c:75
26. 5o L e e e umult-omp.c:85
25.2% i ssdiauinsuand v ahin e kinias Lasd umult-omp.c:86 »
0.2% 2 others Y
0.2% 1 other .
47.9% ullits b bl lsboidenthiing Sanlbatadnaedl  bian d [OpenMP overhead (no region active)] a I I iNea

FORGE



Example 2: Dynamic scheduling reduces trapped capacity

PU
/home/abowen/work/trapped-examples/umult- - .
omp-dynamic 300 1024 ,

= 1 node (8 physical, 8 logical cores per node) |
allinea e
PERFORMANCE Ib per node %
REPORTS 1 process, OMP_NUM_THREADS was 8
node-5 Other TC

FrijJul 22 2016 14:44:34 (UTC+0T)
301 seconds (about 5 minutes)
/home/abowen/work/trapped-examples

Energy Usage

: Energy spent running application code. Higher values will
CPU 20.7% [ VP J 2pp J
reduce trapped capacity.
_ ) Energy used by other system components. Higher values will
Other 12.3% . reduce trapped capacity.
T['ap ped Capa(ity 66.9% _ Unused energy. High values indicate unused energy.

To reduce trapped capacity look at vectorization first, for more information see the CPU section below. In addition, look at
memory accesses, also in the CPU section. This job is bound by compute, scheduling it alongside jobs bound by MPI and
I/O may reduce overall trapped capacity.

OpenMP

A breakdown of the 100.0% time in OpenMP regions:
Computation %
Synchronization <0.1% |

Physical core utilization 100.0% [

System load 100.1% W

CPU

A breakdown of the 100.0% CPU time:

Single-core code 0.0%

OpenMP regions 100.0%

Vector numeric ops 0.0%

|

1
Scalar numeric ops 85.1% 1N

l

1

Memory accesses 14.9%

No time is spent in vectorized instructions. Vectorized
instructions generally require more power than scalar
computation. To reduce trapped capacity check the compiler's
vectorization advice to see if key loops can be vectorized.



Example 3: GPU accelerators unused by application

CPU
/home/abowen/work/trapped-examples/gpu- )
waiting-nogpu 300 12
- 1 node (12 physical, 24 logical cores per node)
alllnea 2 GPUs per node available GPU-__
PERFORMANCE V
REPORTS 15 GiB per node, 11 GiB per GPU
1 process ‘
rhel-7-amd64
Other

Wed Jul 20 2016 11:38:37 (UTC+0T)
307 seconds (about 5 minutes)
/home/abowen/work/trapped-examples

Energy Usage

Energy spent running application code. Higher values will

CPU 0.0% ‘ reduce trapped capacity.
Energy spent running accelerator code. Higher values will
G PU 22.4% - reduce trapped capacity.
) Energy used by other system components. Higher values will
Other 46.1% - reduce trapped capacity.
Tl'ap ped C apa(ity 31.5% - Unused energy. High values indicate unused energy.

CPU metrics are not supported (no intel_rapl module)

To reduce trapped capacity look at accelerator usage first, for more information see the Accelerators section below. In
addition, look at vectorization, see the CPU section below. This job is bound by compute, scheduling it alongside jobs
bound by MPI, accelerator usage, and |/O may reduce overall trapped capacity.

, TC

Accelerators

A breakdown of how accelerators were used:

GPU utilization 0.0% |

Global memory accesses  0.0% |

Mean GPU memory usage 0.2% |

Peak GPU memory usage 0.2% |

Accelerators are available but are not used. It may be more

efficient to make use of accelerators or run on nodes without
them.




Example 3: Developer uses CUDA library. Are we done?

CPU
/home/abowen/work/trapped-examples/gpu- )
waiting 300 12 .

a"inea 1 node (12 physical, 24 logical cores per node)
i GPU~__ i
PERFORMANGCE 2 GPUs per node available ‘
REPORTS 15 GiB per node, 11 GiB per GPU
1 process

rhel-7-amd64
Wed Jul 20 2016 11:27:05 (UTC+01)
301 seconds (about 5 minutes)

Other

/home/abowen/work/trapped-examples

Energy Usage

Energy spent running application code. Higher values will

CPU 0.0% ‘ reduce trapped capacity.
Energy spent running accelerator code. Higher values will
GPu sss [ L g
reduce trapped capacity.
i Energy used by other system components. Higher values will
Other 32.6% [ ,
reduce trapped capacity.
T[‘ap ped Capacity 11.9% . Unused energy. High values indicate unused energy.

CPU metrics are not supported (no intel_rapl module)

To reduce trapped capacity look at time spent waiting for accelerators first, for more information see the CPU section
below. In addition, look at accelerator usage, see the Accelerators section below.

, TC

CPU

A breakdown of the 100.0% CPU time:
Scalar numeric ops 0.0% |
Vector numeric ops 0.0% |
Memory accesses 0.0% |

Waiting for accelerators 99.9% |

Most of the time is spent waiting for accelerators. Sleeping CPU
cores require minimal power. To reduce trapped capacity use
asynchronous calls to overlap CPU and accelerator workloads.

Significant time is spent on memory accesses. Cache-inefficient
memory operations generally require less power than
computation. To reduce trapped capacity use a profiler to identify
time-consuming loops and check their cache performance.

Accelerators

A breakdown of how accelerators were used:
GPU utilization 48.6% R

Global memory accesses  13.7% |

Mean GPU memory usage  0.9% |

Peak GPU memory usage 0.9% |

The accelerator usage is low. Increasing the accelerator usage
could reduce the trapped capacity.



Example 3: Expert helps user overlap CPU and GPU work

CPU
/home/abowen/work/trapped-examples/gpu- )
waiting-async 300 12 .

u 1 node (12 physical, 24 logical cores per node)
allinea

i i GPU-L_.
PERFORMANCE 2 GPUs per node available
REPORTS 15 GiB per node, 11 GiB per GPU Q
1 process

rhel-7-amd64
Wed Jul 20 2016 11:32:57 (UTC+01)
304 seconds (about 5 minutes)

Other

/home/abowen/work/trapped-examples

Energy Usage

Energy spent running application code. Higher values will

CPU 0.0% ‘ reduce trapped capacity.
Energy spent running accelerator code. Higher values will
GPU 45.9% - reduce trapped capacity.
i Energy used by other system components. Higher values will
Othe' 46.1% - reduce trapped capacity.
T[ap ped Capa(ity 8.0% l Unused energy. High values indicate unused energy.

CPU metrics are not supported (no intel_rapl module)

To reduce trapped capacity look at accelerator usage first, for more information see the Accelerators section below. In
addition, look at vectorization, see the CPU section below. This job is bound by compute, scheduling it alongside jobs
bound by MPI, accelerator usage, and |/O may reduce overall trapped capacity.

, TC

CPU

A breakdown of the 100.0% CPU time:
Scalar numeric ops 48.5% 1N
Vector numeric ops 0.0% |
Memory accesses 51.2% 1l

Waiting for accelerators 0.4% |

Significant time is spent on memory accesses. Cache-inefficient
memory operations generally require less power than
computation. To reduce trapped capacity use a profiler to identify
time-consuming loops and check their cache performance.

No time is spent in vectorized instructions. Vectorized
instructions generally require more power than scalar
computation. To reduce trapped capacity check the compiler's
vectorization advice to see if key loops can be vectorized.




CPU

/home/abowen/work/trapped-examples/mmult-
orig 300 4096

1 node (8 physical, 8 logical cores per node)

allinea

PERFORMANGE 15 GiB per node

REPORTS 8 processes
mars

AL

Other

a

Frijul 22 2016 12:18:14 (UTC+01)
463 seconds (about 8 minutes)
/home/abowen/work/trapped-examples

Energy Usage

CPU 202 [

Other 12.9% .

Trapped Capacity es.s% || N ENNIIN

Energy spent running application code. Higher values will
reduce trapped capacity.

Energy used by other system components. Higher values will
reduce trapped capacity.

Unused energy. High values indicate unused energy.

To reduce trapped capacity look at vectorization first, for more information see the CPU section below. In addition, look at
memory accesses, also in the CPU section. This job is bound by compute, scheduling it alongside jobs bound by MPI and

1/0O may reduce overall trapped capacity.

Overall Energy

Detailed information on energy usage:

CPU energy usage wh N
Total energy usage 10.7wh M
Tranned canaciry 21.5 wh -

CPU Energy

A breakdown of the CPU energy usage:
Compute CPU energy usage %

MPI CPU energy usage %

1/0 CPLl enerav usane. %

Application-centric

Trapped Capacity
Reports

Show trapped capacity per application
run

Deployed in the Computing and
Computational Sciences
Directorate, ORNL

Not currently enabled in public
builds on our website

Available to HPM16 attendees on
request



Application Trapped Capacity and Energy
Reporting

Future research: energy-
aware scheduling,
superoptimizing compilers, ...

allinea



Active research

Ongoing research:

- Application Energy Dashboard

. Provide energy cost model for
superoptimizing compiler

- Feed machine learning algorithm that
chooses optimal compilation flags

- Data- and energy-aware scheduling
via SLURM integration



Total Software Energy Reporting and Optimization

] [] Application #1 @

[7] Application #2 aIImea
[] Application #3
[[] Application #4

Application

Energy )
Dashboard 8 - —

» Collect per-
application energy Time e Ao e
metrics ==zl .

* Visualize application ey T T
runs and energy O o © gﬁgg:ﬁ:ﬂgg :; — ““ e

[] Application #3

usage over time ° 1 Ablication #4

 Dive into particular
applications for a
Performance Report

Energy

H 5
:.Ilj

Cores



Total Software Energy Reporting and Optimization

Profiled: slow f on 4 processes, 1 node Sampled from: Mon Jun 13 15:32:18 2016 for 44.1s

i _
100

* MAP provides function-level
performance data to the compiler

« EMBECOSM’s stochastic
superoptimizer targets most

Compi ler energy-costly functions
* Reruns under MAP to measure
impact of changes

CPU floating-point

25.5%

148 MB

o [} [} (]
15:32:47-15:32:47 (0.485s, 1.1% of total): Main thread compute 75.0 %, MPI 25.0 % S l | p e ro ptl m I Z I n g
¥ slow.fo0 X

Memory usage oz ‘ ‘

= program slow
use mpi
implicit none

integer :: pe, nprocs, ierr

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM WORLD, pe, ierr)
call MPI_COMM_SIZE(MPI_COMM WORLD, nprocs, ierr)

10 all imbalan
100. o~ I 11 1L stride
12 8 rlap

| Input/output | Project Files | Main Thread Stacks | Functions |
Functions
Self A Total MPI Child  Function Self CPU energy Child CPU energy

75.0% IE— 100.0% 25.0% 25.0% stride 5.9 | I 1.8 ) N
25.0% 0 250% 25.0% i_barrier_ 1.8 ) -

% mpi_|
<0.1% 100.0% 25.0% 100.0% slow 7.7 ) I

* Building on existing MAGEEC
project for embedded systems

Machine Guided BVEEREe: learning to predict

in Thread Stacks | Functions Energy Efficient gggﬁlleer: é)rggllogﬁci:grennt;l;atlons that
Total MPI Child Function Self CPU energy Com pl|at|0n e EXtending to take additional data

100.0% 25.0% 25.0% " swkie >-9 | I from MAP in the input vector
25.0% 25.0% mpi_barrier_ 1.8 | N
100.0% 25.0% 100.0% slow




Horizon 2020: Next Generation I/O for Exascale

\Work Target: 50% reduction in energy to solution when compared to

today’s systems
package
overview Target: 20x improved I/O performance for real applications

Performance Reports will feed energy and I/O measurements into
the SLURM workload scheduler

SCheduIer Preload data onto nodes before job starts or schedule work close to

. : existing data location
Integration
Schedule compute-intensive jobs on cooler parts of the system

Limit clock speed on jobs known to be memory-bound



Application Trapped Capacity and Energy
Reporting

allinea

I~

Q

DEVELOPER TOOLS PERFORMANCE REPORTS TRIALS PURCHASE SUPPORT RESOURCES NEWS EVENTS COMPANY

allinea | DEVELOPERS. = allinea

PERFC E THE INDUSTRY

S FORGE

STANDARD HPC C++ AND
F90 DEVELOPMENT SUITEg
-

THE WORLD'S MOS]

ANALYSTS

APPLICATION ANALYTICS

FOR HPC CLUSTERS

allinea

The problem we solve...

From ciimate modeling to astrophysics, from financial
modeiing to engine design, the povier of clusters and
supercomputers advances the frontiers of knowledge:
and delivers results for industry. Witing and deploying
Software that explolts that comoutina power is

allinea

PERFORMANCE

REPORTS

How well do your applications explolt your hardware?
Allinea Performance Reports are the most effective
way to characterize and understand the performance
of HPC application runs.

SCALABLE DEBUGGER

INCREASE APPLICATION PERFORMANGE allinea

MAP

2 allinea
X FORGE

Allinea Forge Is the complete ool sulte for software:
development - with everything needed 10 debug,
profile, optimize, edit and build applications for high
performance.

Today: Application-centric
performance tuning and

energy metrics

home/abowen /work/trapped-examples/mmult-
orig 300 4096

1 node (8 physical, 8 logical cores per node)

allinea 15 GiB per node
REPORTS 8 processes

mars

Frijul 22 2016 12:18:14 (UTC+01)
463 seconds (about 8 minutes)
/home/abowen/work/trapped-examples

Energy Usage
CPU 20.2% [l

Other 12.9% .

Trapped Capacity es.ex | N NI

To reduce trapped capacity look at vectorization first, for more information see the
memory accesses, also in the CPU section. This job is bound by comp

1/0 may reduce overall trapped capacity.

Overall Energy

New research: Trapped
Capacity Reports on a per-

application basis

A

Other TC

atinsd

nined

Energy spent running application code. Higher values will
reduce trapped capacity.

Energy used by other system components. Higher values will
reduce trapped capacity.

Unused energy. High values indicate unused energy.

section below. In addition, look at
, scheduling it alongside jobs bound by MPI and

CPU Energy

Future research: energy-
aware scheduling,
superoptimizing compilers

allinea



allinea

High performance tools to debug, profile, and analyze your applications

Technology wish list: open cross-vendor energy
APIls (that do not require root access)

Mark O’Connor

A VP Product Management @

allinea allinea allinea 3allinea

PERFORMANCE

FORGE  DDT MAP REPORTS




